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We present a new spectral method for the direct numerical simulation of
magnetohydrodynamic turbulence at low magnetic Reynolds number. The originality
of our approach is that instead of using traditional bases of functions, it relies on
the basis of eigenmodes of the dissipation operator, which represents viscous and
Joule dissipation. We apply this idea to the simple case of a periodic domain in
the three directions of space, with a homogeneous magnetic field in the ez direction.
The basis is then still a subset of the Fourier space, but ordered by growing linear
decay rate |λ| (i.e. according to the least dissipative modes). We show that because
the lines of constant energy tend to follow those of constant |λ| in the Fourier space,
the scaling for the smallest scales |λmax | in a forced flow can be expressed, using this

single parameter, as a function of the Reynolds number as
√

|λmax |/(2πkf ) � 0.5Re1/2,
where kf is the forcing wavelength, or as a function of the Grashof number Gf , which

gives a non-dimensional measure of the forcing, as |λmax |1/2/(2πkf ) � 0.47G0.20
f . This

scaling is also found to be consistent with heuristic scalings derived by Alemany
et al. (J. Mec., vol. 18, 1979, pp. 277–313) and Pothérat & Alboussière (Phys. Fluids ,
vol. 15, 2003, pp. 3170–3180) for interaction parameter S � 1, and which we are
able to numerically quantify as kmax

⊥ /kf � 0.5Re1/2 and kmax
z /kf � 0.8kf Re/Ha.

Finally, we show that the set of least dissipative modes gives a relevant prediction
for the scale of the first three-dimensional structure to appear in a forced, initially
two-dimensional turbulent flow. This completes our numerical demonstration that
the least dissipative modes can be used to simulate both two- and three-dimensional
low-Rm magnetohydrodynamic (MHD) flows.

1. Introduction
Turbulence can be described as a flow where a large number of different patterns

evolve in complex interaction with one another. The knowledge of how much energy
each of them carries at a given time then provides a reasonably simple statistical
representation of the flow. Our purpose is to apply this very idea to turbulence in
liquid metal flows subjected to a homogeneous external magnetic field by tailoring
existing spectral methods to this particular problem.

Although simple, these ideas quite closely express the phenomenology behind
Kolmogorov’s (1941) famous theory of homogeneous isotropic turbulence. Here, the
patterns are isotropic vortices sorted in three categories, according to their size lk
(or wavelength k): the large scales where energy is injected in the flow through
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some unspecified forcing, the inertial range where mid-size vortices pass on energy
to smaller scales and the smallest scales of size kκ ∼ Re3/4 where kinematic energy is
dissipated by viscous friction (Re = UL/ν stands for the Reynolds number built on
velocity U and length L, which are typical of the large scales, as well as the fluid
kinematic viscosity ν). This early picture has been a lot further refined since then to
account for more complex effects such as intermittency (see Frisch 1995 or Davidson
2004 for an overview).

The description of the flow in terms of patterns is also well reflected in the more
mathematical spectral approach of turbulence, in which the solution is sought as
a decomposition over the elements ui of a basis that spans the functional space it
evolves in:

u =
∑

i

ci (t)ui (x). (1.1)

The spatial dependence (x) representing the flow patterns is carried by ui while
the time dependence (t) appears in the coefficients of the expansion ci only, so
when (1.1) is injected into the set of partial differential equations that governs the
problem, the latter reduces to a simpler system of ordinary differential equations (see
Canuto et al. 2006 for a detailed account of spectral methods in fluid mechanics).
Apart from clear advantages in terms of simplicity and precision, spectral methods
can also be tailored to the physical reality they describe by choosing a basis (ui )
that represents realistic flow patterns. This basis can be obtained from the set of
eigenvectors and adjoint eigenvectors of the operator derived from the linear part of
the motion equations, with the boundary conditions of the problem. In incompressible
homogeneous turbulence in a spatially periodic domain, the corresponding operator
is the self-adjoint Stokes operator. Its eigenvectors are Fourier functions (Constantin
et al. 1985), which are classically related to vortices of wave vector k. When the flow
is isotropic, vortices of all shapes are present in statistically equal number, so they
are only sorted according to their size ‖k‖, which facilitates the direct comparison
with Kolmogorov’s phenomenology.

The picture is quite different for turbulence in liquid metals, where the application
of a strong magnetic field B breaks isotropy. The fluid motion induces eddy currents
that produce strong Joule dissipation and interact with the magnetic field to yield
the Lorentz force. When the magnetic Reynolds number Rm is small, as in most
experiments at the laboratory scale, the magnetic field induced in turn by these
currents can be neglected, so the total magnetic field is externally imposed and not
altered by the fluid motion. In the frame of this so-called low-Rm approximation
(see Roberts 1967), the Lorentz force mainly damps velocity variations along the
magnetic field lines, so vortices tend to be elongated in this direction, resulting in
a strongly anisotropic flow. This effect is counteracted by inertial effects that tend
to break up long vortices and promote isotropy in the flow. Just how isotropic the
flow is is determined by the ratio between the Lorentz force and inertia, expressed
by the interaction parameter S = σB2L/(ρU ), where σ and ρ are the fluid’s electric
conductivity and density. For large S, in a three-dimensional cubic periodic domain,
when all vortices extend from one boundary to the other, the flow is perfectly two-
dimensional, so a transition exists between two- and three-dimensional turbulence.
These effects were pointed out in the 1960s (Moffatt 1967) while Sommeria & Moreau
(1982) analysed the conditions for a channel flow perpendicular to the magnetic field
B to be quasi two-dimensional. More recently, Davidson (1997) explained how vortices
evolve in a magnetic field using the conservation of angular momentum.
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Spectral methods have been numerically implemented to study this type of flow in
three-dimensional periodic domains in several important pieces of work, starting with
Schumann (1976), who showed that the free decay of initially isotropic turbulence
under the influence of a homogeneous magnetic field in a three-dimensional periodic
box at high S could lead to a two-dimensional state. Zikanov & Thess (1998)
found that initially isotropic MHD flows held steady on average by application of
a forcing localized in a spherical shell of the Fourier space exhibited intermittent
shifts between two- and three-dimensional states for S ∼ 1. Intermittency was also
observed by Thess & Zikanov (2007) in both forced and decaying MHD flows in a
tri-axial ellipsoid. Most of these studies, however, have used the basis derived from
the Stokes operator, and analysed the flow in terms of the modulus of the structures’
wave vector k, when clearly, anisotropy imposes that vortices of same k but oriented
along or across the magnetic field should undergo very different levels of Joule
dissipation and eventually carry very different levels of energy. Also, since no clear
MHD equivalent to the Kolmogorov laws had been derived at that time, Kolmogorov
laws themselves were used to impose a global cutoff frequency on k when once
again, the resolution required to resolve the flow completely would be expected to
decrease when spanning directions from across to along the magnetic field direction.
Therefore, determining a more ‘MHD-suitable’ basis, and obtaining MHD equivalent
to the Kolmogorov laws for the dissipative scales in both two- and three-dimensional
MHD forced turbulence are the precise questions we wish to address in this work, by
going back to the initial idea of using a basis of functions that imitates flow patterns
as closely as possible. We focus our attention on the configuration of a cubic domain,
periodic in the three spatial directions, with a homogeneous magnetic field in the z

direction. Although physically not realistic, these assumptions offer a simple but still
meaningful test case for the application of our ideas, keeping in mind that results
more directly comparable to experiments will have to come out of a configuration
where boundaries that intercept the magnetic field lines at least will be physical
walls.

In the frame of the low-Rm approximation, the Lorentz force appears as a linear
term in the Navier–Stokes equation, so the linear part of the latter is in fact the sum
of the Stokes operator and that related to the Lorentz force (see Roberts 1967). We
have previously solved the spectral problem for this operator (Pothérat & Alboussière
2003), and shown that it was self-adjoint and that its sequence of eigenfunctions (the
least dissipative modes) was able to finely mimic the anisotropic properties of MHD
turbulence. We also showed that this sequence of modes achieved an upper bound
for the attractor dimension of the system that was consistent with estimates obtained
heuristically for the size of the smallest scales. It is worth mentioning that the spectral
analysis of the same operator, but in the case where the boundaries orthogonal to B are
physical walls, leads to a sequence of eigenfunctions that exhibit the correct Hartmann-
boundary-layer profile in the vicinity of these walls (see Pothérat & Alboussière 2006
and Moreau 1990 for a review of the theory of these layers). In the present work, we
will therefore numerically implement our previously found basis in order to extract the
relevant modes and determine the MHD equivalent of the Kolmogorov scales. In § 2,
we first recall and complement the properties of the linear part of the Navier–Stokes
equation found in Pothérat & Alboussière (2003). We then implement this basis in an
existing spectral code and determine some Kolmogorov-like laws for the small scales
in three-dimensional MHD flows which should serve as a criterion to resolve the flow
completely in § 3. Since an essential property of MHD turbulence is that it can be two-
dimensional or three-dimensional, we devote § 4 to testing whether direct numerical
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simulation (DNS) based on the least dissipative modes can reproduce this feature.
This leads us to find out the length scale of vortices in which three-dimensionality first
appears when the intensity of the forcing is increased in an initially two-dimensional
flow.

2. Principle of DNS based on the least dissipative modes
2.1. Problem formulation

We consider an incompressible conducting fluid (density ρ, electrical conductivity
σ and kinematic viscosity ν) in a three-dimensional periodic cube Ω of size L0

under imposed homogeneous and steady magnetic field Bez. In the frame of the
low-Rm approximation, the governing equations can be reduced to the closed system
made of momentum and mass conservation, which involve the flow velocity u(x, t)
and pressure p(x, t) only (see Roberts 1967 and Sommeria & Moreau 1982). A
third equation deduced from electric current conservation and the Ohm’s law can
be used to reconstruct the electric potential and the electric current a posteriori. We
shall, however, only need the equations for u(x, t) and p(x, t) here. The equations
can be written in non-dimensional form by choosing reference length L, time L2/ν,
velocity ν/L, pressure ρν2/L2 and dimensionless external force || f ||/L3/2, where
‖ · ‖ = (

∫
| · |2dΩ)1/2 is the usual norm in L2(Ω) space. The Navier–Stokes equations

are then written as

∂

∂t
u(x, t) + (u · ∇)u + ∇p = ∇2u − Ha2∇−2 ∂2u

∂z2
+ G f (x, t),

∇ · u = 0,

⎫⎬
⎭ (2.1)

where Ha = LB
√

σ/(ρν) is the Hartmann number while G = L3/2‖ f ‖/ν2 is the
Grashof number, which represents the forcing normalized by viscous forces (as in
Doering & Gibbons 1995). Consequently, the solution of (2.1) is defined by the
only two relevant control parameters Ha and G in (2.1). The choice of L is not
straightforward as it is not imposed by the geometry. It is noteworthy that if it is set
to L = (1/B)

√
ρν/σ , then the governing equations depend on the single dimensionless

parameter G/Ha3. This reference length, however, ignores the dynamics of the large
scales present in the flow. One would instead expect a better suited reference length
to follow the forcing scale to some extent. Since, however, the latter is not specified at
this stage, we shall choose L = L0, as it represents de facto the largest achievable scale
in our problem, and denote by Ha0 the Hartmann number built on L0. It is worth
stressing that we shall not try to minimize or ignore the effect of the boundaries where
periodic conditions are applied. In particular, we shall also analyse two-dimensional
flows where structures extend across the whole domain in the z direction. Although
clearly not experimentally achievable, this configuration has often been used as
an interesting toy model for the study of the transition between two-dimensional
and three-dimensional flows (Nakauchi, Oshima & Saito 1992; Zikanov & Thess
1998; Thess & Zikanov 2007). Therefore, contrarily to many previous studies of
turbulence where periodic domains are used to represent a small volume taken out of
a homogeneous flow, and where structures of the size of the domain should therefore
be avoided, the conditions under which structures extend over the full domain along
z will be of interest in this work. For this reason, the length L0 will be a meaningful
parameter of the problem, wherever such two-dimensional vortices are considered
(in § 4).
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Two further non-dimensional numbers can be defined that are traditionally used in
MHD turbulence: the usual Reynolds number Re = ULint

ν
, with integral length scale

Lint =
π

2||u||2
∫ ∞

0

||k||−1
E(k)dk (2.2)

gives a measure of the intensity of turbulence. (Here, k is the three-dimensional wave
vector that appears in the Fourier transform of u, E(k) is the spectral power density
of all wave vectors of norm k and U = (

∫
Edk)1/2 is a reference velocity.) Also, the

magnetic interaction parameter S = σB2L0/(ρU ) represents the ratio of the Lorentz
force to inertia. In freely decaying turbulence where boundaries are ignored, taking
U as a reference velocity from the initial velocity field and Lint as a reference length,
S becomes the only non-dimensional parameter that governs the problems. In our
case, however, only G and Ha0 are known a priori. In this sense, they are the control
parameters for this problem.

The problem is fully defined by the addition of periodic boundary conditions

u(x, y, z, t) = u(x + a, y, z, t)
= u(x, y + b, z, t)
= u(x, y, z + c, t), a, b, c ∈ �,

(2.3)

and of the initial condition

u(x, y, z, 0) = ui (x, y, z). (2.4)

These, together with the mass conservation, which simply implies that u is a solenoidal
vector field, are taken into account by specifying that the solution u is sought in the
functional space V 2, a solenoidal subspace of Hilbert space H 2. Since the spectral
method we wish to implement is derived from the spectral properties of the governing
equations, these ought to be written in abstract form, with help of the Helmholtz
decomposition:

∂

∂t
u = DHa 0

u + B(u, u) + G f ,

u|t=0 = ui.

(2.5)

Details of the mathematical framework can be found in Dymkou & Pothérat (2009).
The advantage of this form is that it gathers the linear part of the equations into a
single operator that operates in V 2 onto itself:

DHa = P

(
∇2 − Ha2∇−2 ∂2

∂z2

)
: V 2 → V 2. (2.6)

P denotes the orthogonal projection onto the subspace of solenoidal fields, and
nonlinear terms are represented by the bilinear operator B(u, u) = P (u · ∇)u.

In the absence of magnetic field, Ha0 = 0 and the system reduces to the
usual Navier–Stokes equation. Periodic boundary conditions then ensure that the
eigenfunctions of the Stokes operator form a basis of V 2 (Foias et al. 2001). They
can thus be used for the spectral decomposition in order to reduce the problem to a
simpler system of ordinary differential equations. For Ha0 �= 0, the physical relevance
of the linear part can be seen by noticing that the Lorentz force only appears in
DHa 0

. The spectral properties of this operator are therefore expected to express
the mode-selecting dissipation that results from its action on the flow. This makes
the set of eigenfunctions of DHa 0

a good candidate for the choice of the basis of
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modes required in the solution’s expansion (1.1). We have previously found these in
Pothérat & Alboussière (2003) and shown that they constituted a basis of V 2, so we
shall now summarize and extend these results derived from the spectral characteristics
of the dissipation operator DHa .

2.2. Spectral properties of the DHa operator for any given Ha

DHa is a linear operator. The boundary conditions are accounted for in the definition

of the domain of the operator, defined as D(A) = V 2(Ω). Since Ω is bounded, the
natural injection of V 2 into L2(Ω) is compact; thus, DHa , as an operator in L2(Ω), is
compact (Foias et al. 2001). Also, this operator is self-adjoint and therefore possesses
a discrete set of eigenvalues (λk) and eigenfunctions vk that form an orthonormal
basis of the L2(Ω) space. We have shown in Pothérat & Alboussière (2003) that the
eigenfunctions vk = (vk

i )i∈{x,y,z} are a subset of the usual Fourier space:

vk
i = Vi ej2πk · x, (2.7)

with wavenumbers k = (kx, ky, ky) ∈ �3, constants Vi ∈ � and where j is the
imaginary unit. The corresponding eigenvalues are

λk = −4π2(k2
x + k2

y + k2
z ) − Ha2 k2

z

k2
x + k2

y + k2
z

. (2.8)

We denote the set of all eigenvalues (2.8) by σ∞(DHa ). Since λk represents the linear
decay rate of mode vk by DHa , and λk < 0, (λk) and vk can be arranged by growing
dissipation. This singles out λk as a spectral parameter that naturally reflects the
effects of the Lorentz force. From the definition (2.8), we see that for Ha = 0,
|λk|/(2π)2 reduces to the square length k2 = ||k||2 of the wave vector k which is
the usual spectral parameter in non-MHD isotropic turbulence (see figure1a). In the
MHD case, different values of the magnetic field B or of the reference length L

that enter the definition of Ha yield different sets of eigenvalues (see figure 1a–d ).
Such dependency is absent in the usual Fourier basis ordered by growing ‖k||. Thus,
the main novelty introduced by using this basis does not reside in the elements
of the basis themselves but rather in the fact that they are ordered by growing
values of |λk| instead of by growing k. This earns these modes their denomination of
‘least dissipative’. Furthermore, we previously showed (Pothérat & Alboussière 2003)
that the set of least dissipative modes required to describe the flow possessed the
anisotropy properties predicted heuristically for such MHD flows. In the light of (2.8),
the sequence (−λk)

1/2/(2π) therefore appears as an anisotropic generalization of the
usual k-sequence, and the spectral decomposition (1.1) of u can now be rewritten as

u(x, t) =
∑

|λk |<|λmax |

cλk (t)vλk (x), (2.9)

where ck(t) are the expansion coefficients, vλk (x) are the eigenvectors of DHa for
eigenvalue λk and λmax defines the maximum resolution required to resolve the flow
completely.

2.3. Choice of the set of least dissipative modes

At this point, we still lack two parameters to be able to choose the set of modes to
fully resolve a given flow, defined by the values of G (or Re) and Ha0. Firstly, the
‘shape’ of the set of modes is determined by the value of Ha only. We have, however,
defined Ha0 using the domain size L0 as a reference length. Clearly, for Ha to reflect
the actual physics of the flow, another reference length L should be found that
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Figure 1. Iso-λ curves for different values of Ha . Note that all families of curves (except
those for Ha = 0) can be scaled down to a single family in the (k⊥/Ha, kz/Ha) plane where

k⊥ =
√

k2
x + k2

y . Values of kmax
⊥ and kmax

z are marked on arbitrary iso-λ curves to illustrate how

they are related to λmax .

accounts for the forcing scale in one way or another. Secondly, the number of modes
N required to fully resolve the flow or, equivalently, the largest value of |λ|, |λmax |
in (2.9), must be determined in such a way that the flow is fully represented by its
projection onto the set of N least dissipative modes defined by |λ| < |λ(N)| = |λmax |.
For this, the global attractor of the motion equations has to be entirely included
in the functional subspace spanned by the N least dissipative modes. Consequently,
if dM is the dimension of this attractor, or equivalently, the number of degrees of
freedom of the flow, we must have |λmax | � |λ(dM )|. Unfortunately, it is difficult to
obtain a precise estimate for dM . Its physical interpretation, however, can be easily
understood: in both the non-MHD and the MHD case, the reason why dM is finite
is that viscous dissipation introduces a cutoff at the small scales, beyond which flow
structures carry a vanishingly small amount of energy. Constantin et al. (1985) give
an elegant illustration of the physical meaning of these mathematical concepts. This
cutoff wavelength can be estimated heuristically, which, in turn, leads to scalings for
N . The most famous example is that of the three-dimensional non-MHD case, where
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the heuristic Kolmogorov scale kmax = kκ � CκRe3/4 (= |λmax |1/2/2π in our notations,
and where Cκ > 1, Kolmogorov 1941) gives an estimate that is precise enough to
be used as a criterion to fix the number of determining modes as N � C3

κRe9/4

in a Fourier-based DNS. In two-dimensional turbulence, a precise estimate for the
attractor dimension (Doering & Gibbons 1995) and a heuristic scaling for the size of
the smallest, or Kraichnan scales (Kraichman 1967; Ohkitani 1989) coincide precisely
with kmax = kk � G1/3(1 + log G)1/6 where kmax = |λmax |1/2/2π .

In the MHD case, viscous dissipation still determines the cutoff scale, even though
Joule dissipation extracts energy at all scales. Alemany et al. (1979) and Pothérat &
Alboussière (2003) used this idea, and further assumed that the anisotropy k⊥/kz was
scale-independent and that inertia balanced the Lorentz force at all scales to derive
some heuristic scalings for the cutoff value λmax and N , when S � 1:

N � C0
Re

2

Ha
, (2.10)√

|λmax |
2πkf

� CλRe1/2. (2.11)

We have here expressed λmax with respect to the largest forcing scale in the problem
Lf = L0/kf to reflect the fact that for spatially periodic domains, the forcing scale is a
relevant large scale that determines the small scales while the size of the computational
domain is not. Since the set of least dissipative modes is a subset of that of Fourier
modes, these scalings can be more classically expressed in terms of the smallest scales
across (subscript ⊥) and along the magnetic field by virtue of the properties of (2.8):

kmax
z

kf

� πkf C2
λ

Re

Ha
,

kmax
⊥
kf

� CλRe1/2. (2.12)

We have been able to partly confirm these scalings by finding an upper bound for
the attractor dimension (Pothérat & Alboussière 2003). C0 or Cλ, however, remain to
be evaluated, so no practical criterion currently exists for the number of determining
modes in flows where a magnetic field is present. The next section is therefore devoted
to searching numerically the values of L and λmax . In particular, we shall estimate the
lowest values of Cλ for which the flow is fully resolved for S � 1. When S � 1, the
flow becomes two-dimensional, so the set of least dissipative modes becomes the two-
dimensional isotropic set of Fourier modes defined by N � k2

k (or λmax = (2πkk)
2).

When S 
 1, the effects of the Lorentz force become small and the set of least
dissipative modes differs little from that of the usual three-dimensional isotropic set
of Fourier modes N � C3

κRe9/4 (or λmax = (2πkκ )
2).

At this point, it is important to note that a flow described by the set of least
dissipative modes with λmax determined by the rules above is resolved exactly, without
any approximation, as all energy and dissipation containing modes are contained in
the attractor. In particular, a clear distinction should be made between solving the
equations by projection on the full set of least dissipative modes, which is a type
of DNS, and approaches such as large eddy simulations (LES) where part of the
spectrum is modelled and not resolved. Both approaches could even be combined to
achieve important reductions in computational cost.
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3. Determination of the exact set of modes required to resolve the flow for S � 1

3.1. Numerical system and procedure

We base our DNS on the eigenfunctions of the dissipation operator. Since these
are a subset of the usual Fourier modes, we use the code developed by Knaepen &
Moin (2004) and Vorobev et al. (2005), where the problem formulated in § 2.1 was
implemented and fully tested. It relies on traditional spectral methods based on a
Fourier decomposition, with fast Fourier transform and a fourth-order low-storage
time-integration Runge–Kutta scheme (see Rogallo 1981 and Williamson 1980). The
alias error resulting from the bilinear products is removed by phase-shifting method
(Orszag & Patterson 1971; Rogallo 1981), which allows us to retain all of the Fourier
modes but requires eight evaluations during each time step. We adapt this code to our
needs of performing calculations using set of modes that satisfy |λk| < |λmax |, simply
by setting unneeded modes to zero when required. In all calculations presented in
the whole of § 3, initial velocities are set to zero (u(t = 0) = 0). The flow is driven
by two distinct types of constant forcing f in (2.5), which respectively favour two-
dimensional and three-dimensional structures. The two-dimensional forcing is applied
to Fourier modes with wave vectors kf = (kf x, kfy, kf z) ∈ {(6, 6, 0), (7, 7, 0), (9, 9, 0)}

f 2D(x, t) =
∑

k f

(sin(kf x2πx) cos(kfy2πy)ex + cos(kf x2πx) sin(kfy2πy)ey), (3.1)

and tends to generate a flow with neither velocity component nor velocity variations
in the z direction. Since the numerical algorithm would not otherwise allow the
solution of the problem to be three-dimensional at all, we add a small constant
force of amplitude ε = 10−3 (relative to f ) in each ball ||k − kf || < 2. There are
several other reasons for this choice: firstly, the forcing has to be a combination of
the set of modes used for the expansion. In this regard, a practically z-independent
forcing can be used to simulate both two-dimensional flows (for which the effect
of the small three-dimensional component of the forcing falls within the numerical
error) and three-dimensional flows. The second reason is that this type of constant
weakly three-dimensional forcing strongly resembles that obtained in liquid metal
experiments by injecting electric current though metallic electrodes embedded in
insulating Hartmann walls (Sommeria 1986, 1988; Delannoy et al. 1999). Our most
recent experiments on electrically driven channel flows under transverse magnetic
fields (Klein, Pothérat & Alferjonok 2009; Klein & Pothérat 2010) have indeed
confirmed the previous theoretical prediction that in such experiments, even for high
values of Ha, inertia induced some slight velocity variations along the magnetic field
lines, so that three-dimensional vortex instabilities such as those analysed by Thess &
Zikanov (2007) do not occur in strictly two-dimensional, or even strictly quasi-
two-dimensional flows, but rather is some weakly three-dimensional flow (Pothérat,
Sommeria & Moreau 2000), which our weakly three-dimensional forcing imitates.

Finally, Vorobev et al. (2005) have suggested that the two- or three-dimensional
nature of the forcing had no noticeable influence on the anisotropy of intermediate
and small scales. This is supported by the properties of the least dissipative modes, as
they imply that the small scales are determined by G , which only carries the intensity
and the scale of the forcing, and Ha (Pothérat & Alboussière 2003). To check this
point further, we have performed a series of computations in the same conditions as
those described above, but with a three-dimensional forcing. The latter was chosen
to be of the ABC type (Mininni, Alexakis & Pouquet 2006) so as to act on the three
components of the velocity, and is expressed as
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Ha0 G nx × ny × nz Re Cλ Cκ αE(0.5) Haopt /2π Sopt Symbol

Two-dimensional forcing
80 2.67 × 106 064 × 064 × 064 70 0.55 1.33 0.999 23.70 8.02 �

80 7.34 × 107 128 × 128 × 128 97 0.81 2.07 0.996 27.80 7.97 �

80 1.47 × 107 128 × 128 × 128 159 0.63 1.43 0.998 24.80 3.87 �
80 2.94 × 107 128 × 128 × 128 194 0.57 1.23 0.996 24.90 3.20 �
80 3.34 × 107 128 × 128 × 128 195 0.57 1.23 0.995 24.50 3.08 �

80 6.67 × 107 128 × 128 × 128 264 0.50 0.98 0.998 24.20 2.21 �

400 6.67 × 107 128 × 128 × 128 216 0.71 1.13 0.995 65.80 20.04 �

400 1.00 × 108 256 × 256 × 256 245 1.11 2.07 0.986 77.40 24.45 �

400 1.33 × 108 128 × 128 × 128 282 0.53 0.93 0.998 42.70 6.47 �
400 2.00 × 108 256 × 256 × 256 343 0.90 1.61 0.994 61.40 10.99 �
400 6.67 × 108 512 × 512 × 256 575 1.28 1.09 0.986 48.25 4.05 �

1000 1.33 × 109 512 × 512 × 256 935 1.08 1.52 0.998 112.70 13.58 �

1000 2.67 × 109 512 × 512 × 512 1140 0.94 1.3 0.996 86.00 6.44 �

Three-dimensional forcing
400 1.5 × 108 256 × 256 × 256 465 0.71 1.28 1.000 95.00 19.41 �

400 6.0 × 108 256 × 256 × 256 512 0.62 1.19 0.999 71.00 9.84 �

Table 1. Summary of all cases calculated with initial condition u(t = 0) =0: Grashof number
G , embedding spectral resolution nx × ny × nz, Reynolds number Re, resolution (Cλ and Cκ ),
fraction of the total energy α3D contained in modes with |λ| lower than the value given by
(3.4), ‘optimal’ Hartmann number Haopt = Ha0(Lopt/L0) and “optimal” interaction parameter

Sopt = Ha2
opt /(4π2Re).

f 3D(x, t) = (cos(kfyy) + 1.1 sin(kf zz))ex + (1.1 cos(kf zz) + 0.9 sin(kf xx))ey

+ (0.9 cos(kf xx) + sin(kfyy))ez, with kf = (6, 6, 6). (3.2)

All calculated cases are summarized in table 1.

3.2. Determination of the length scale Lopt

We first address the problem of choosing the best suited reference length L that enters
the definition of the Hartmann number Ha for a flow at given Ha0 and G (or Re).
This problem appears only in three-dimensional flows as in two-dimensional flows,
the least dissipative modes reduce to the isotropic set of two-dimensional Fourier
modes. At this point, one should remember that the choice of the basis is arbitrary
and should not have any impact on the final solution, as long as its elements can be
combined to obtain all the energy and dissipation-carrying modes. In the particular
case of a basis of least dissipative Fourier modes, this gives us the freedom to leave
L as a free parameter a priori, and to fix it so as to obtain a basis that contains
the least possible non-energetic non-dissipative modes, which are superfluous for the
description of the solution. How this can be done can be understood by analogy with
the non-MHD case where the flow is expected to be isotropic in regions of the Fourier
space located far enough from the forcing. In these regions, the energy of a given
mode k is expected to depend on ‖k‖ only. Similarly, for the spectral parameter λ to
be physically relevant to the MHD case, we would expect each eigenmode of DHa
of eigenvalue λ located far enough from the forced modes kf to carry approximately
the same amount of energy. The erratic nature of turbulent flows, however, makes it
impossible to satisfy this condition exactly, so we shall instead look for the optimal
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Figure 2. Contours of spectral density of energy E(k⊥, kz) (colours) with iso-k and iso-λ curves
(solid lines) for several values of L at Ha0 = 80 and G = 2.94 × 107 with the two-dimensional
forcing.

value Lopt of L that minimizes the functional

ΣEλ
(L) =

∑
v∈σ (DHa )

∑
k:λ(k)=v

∣∣∣∣Eλ(k)

Eλ

− 1

∣∣∣∣ , (3.3)

where σ (DHa ) refers to the finite set of eigenvalues of DHa for the numerical
resolution considered, Eλ denotes the energy summed over all modes of eigenvalue λ
and Eλ(k) is the spectral energy density at point k of the iso-λ surface. ΣEλ

(L) gives
one possible overall measure of how strongly E varies over shells shaped according
to the iso-λ surfaces in the Fourier space. In practice, we start from a ‘traditional’
DNS resolved up to the Kolmogorov scale (these cases are gathered in table 1), and
therefore over-resolved in the MHD case (on the basis that the attractor dimension
decreases monotonically when Ha increases; Pothérat & Alboussière 2003). This yields
a reference solution from which E(k⊥, kz) can be extracted. We then calculate the
minimum of functional ΣEλ

(L) numerically (the variations of ΣEλ
(L) are shown in

figure 3(a)). This is illustrated as a typical example with the two-dimensional forcing
for Ha0 = 80 and G = 2.94 × 107 in figure 2 where the sets of iso-λ curves are
plotted for several values of L along with the contours of E(k⊥, kz). One sees that
the iso-λ curves corresponding to Lopt/L0 = 0.3 × 2π in figure 2(c) follow the energy
distribution well, as opposed to iso-k lines, shown in figure 2(a), which cross many
different levels of energy. This shows that the basis of the least dissipative modes does
carry the morphology of the energy distribution quite realistically, provided we choose
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Figure 3. (a) Variations of ΣEλ
(L) for the cases listed in table 1. The minima indicate

L = Lopt . Symbols are those from table 1. (b) variations of Lopt with Ha0 and G for Ha0 = 80
and two-dimensional forcing (dash-dot), Ha0 = 400 and two-dimensional forcing (dashed),
Ha = 1000 and two-dimensional forcing (dotted) and Ha = 400 and three-dimensional forcing
(solid).

L � Lopt . It can be seen from the variations of Lopt with G for Ha0 ∈ {80, 400} in
figure 3 that it depends little on either G or Ha0, with values around 0.3L0 × 2π for
Ha0 = 80 and 0.2L0 ×2π for Ha0 = 400. The fact that it still varies a little with Ha0 is
certainly due in part to the ‘non-universality’ introduced by the forcing, as the energy
distribution clearly departs from the iso-λ lines in the vicinity of the forced modes.
At a given Re, or G , the influence of these modes increases with Ha0, as for higher
Ha0, the energy tends to stay closer to the (kx, ky) plane, which brings the smallest
scales closer to the forced modes kf . For the purpose of performing DNS based on
the least dissipative modes, a precise determination of Lopt is, however, not necessary
as energy and dissipation spectra, E(λ) and D(λ), obtained with L = Lopt ± 30%,
using only modes in the region |λ| < |λmax | (where λmax was fixed according to (3.3)
derived in the next section), yielded no significant difference from those obtained from
calculations based on Lopt exactly. This robustness also confirms that as long as the
iso-λ curves follow the contours of energy well enough in the vicinity of the small
scales, the set of Fourier modes determined by λmax contains very few non-relevant
modes. Also, since Haopt = BLopt

√
σ/(ρν) gives the most physically relevant measure

of the Lorentz force, we shall now prefer it to Ha0 to express the laws for the small
scales (2.11) and (2.12).

3.3. Scaling laws for λmax

Having chosen L = Lopt gave us a fixed a family of modes, indexed by the
corresponding sequence of values of λ. We now need to know how many of these
modes are required to resolve the flow fully, for given values of Haopt and G (or
Re). A usable estimate for this number is obtained through a value for the numerical
constant Cλ that appears in the scaling law for the smallest scales λmax(Haopt , Re) (see
(2.11)). To find it, we select four cases covering different values of Ha, G , two- and
three-dimensional forcing. In each case, we first calculate the established state with
resolution up to the Kolmogorov scale kκ (summarized in table 1). Since this case
is over-resolved, it serves as a reference for the energy and dissipation distribution in
the Fourier space. We then recalculate several times the same flow, but resolved up to
|λ|1/2 = |λcut |1/2 = CλRe1/2 with different values of Cλ and compare the corresponding
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power and dissipation density spectra, E(λ) and D(λ), to those obtained in the
reference DNS resolved to the Kolmogorov scale. Finally, the impact of the reduction
in resolution on time-dependent flows is assessed by applying the same procedure
to the freely decaying flow that follows a shutdown of the forcing in the established
regime of each of the four cases, at t = tdecay .

Figure 4 summarizes all calculated cases along with resolution and embedding
resolution. The latter is of no incidence on the solution but gives a measure of the
reduction in computational cost already achieved by using our ‘λ-based’ approach,
even though our spectral code has not been optimized for it.

The time-averaged energy distributions in the (k⊥, kz)-plane (k⊥ =
√

k2
x + k2

y) show

no visible discrepancy between the reference case and those for Cλ ∈ [0.29, 0.59].
This indicates that even with the lowest resolution, which uses up to 64 times less
modes than the reference case, the energy distribution and the flow anisotropy are
still qualitatively well rendered. An inspection of the corresponding λ-based energy
and dissipation spectra from figures 5 and 6 confirms and refines the picture: the
small energy and dissipation pile-up that inevitably occurs at the high-λ end of the
spectrum certainly remains confined there for all Ha for Cλ � 0.5. It does, however,
tend to slightly spread towards the higher end of the spectrum for lower values of
Cλ, particularly in the dissipation spectra and in the cases at lower Re. Even though
it is only pronounced in the Ha0 = 80 case, this propagation of error towards larger
scales is a usual symptom of under-resolution, and can be more easily spotted on
the dissipation spectra. This error on the dissipation is further revealed when the
flow is freely decaying. For each of our four reference cases, we have calculated
such flows starting from an initial state in the established regime resolved up to
the Kolmogorov scale. In each case, the subsequent evolution of the flow without
forcing was calculated several times from this same initial condition, for the same
maximum resolutions as those used to calculate the established flows. The evolution
was calculated over 20 Joule times, after which the flow had lost most of its energy.
As for the dissipation spectra in the established state, it turns out that a discrepancy
between reference case and cases resolved with Cλ < 0.5 is visible in the evolution
of both the total energy and the energy in the field direction. Cases resolved with
Cλ � 0.5, on the contrary, match the reference case to a great precision, both when
the flow is established and freely decaying. As a matter of fact, the decay curves for
Cλ � 0.5 cannot be distinguished from those of the reference case on the graph.

To quantify the precision reached for a given value of Cλ =
√

|λmax |/(4π2k2
f Re) over

a wider range of parameters than those of the four reference cases calculated above, we

define a reduced spectral parameter normalized by scaling (2.11): l =
√

|λ|/(4π2k2
f Re),

such that for l = Cλ, λ = λmax . We have calculated the variations of total energy
ΣE(l) and dissipation ΣD(l) contained in the spectral subspace enclosed in the iso-λ
curve for each value of l � Cλ for a selection of cases resolved beyond Cλ = 0.5
(summarized in table 1, along with their resolution expressed in terms of Cλ and
Cκ ). The results are illustrated in figure 7. Firstly, it turns out that for a given value
of l, the ratio αE(l) of ΣE(l) to the total energy ΣE(Cλ) is constant for all calculated
cases, regardless of the values of Ha , G and of the nature of the forcing (with, in
particular, αE(l = 0.5) � 0.99 no matter how high Cλ is, as shown in table 1). In other
words, the precision attained for a given value of Cλ remains essentially constant
when Ha and G are varied beyond their values in the four reference cases calculated
above. This brings further confirmation of the validity of scaling laws (2.11), and of
their independence of the nature of the forcing. Secondly, the variations of ΣE(l)
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Figure 4. Logarithmic energy distribution in the (k⊥, kz)-plane. Blue dots correspond to
low-energy modes. Each column represents flows calculated with the same control parameters
and the same forcing (indicated at the top), but with different resolutions, determined by the
value of Cλ or, equivalently, by the spectral domain of resolution defined by λ < λcut , both
indicated below each graph. Calculations from the first line are resolved up to the Kolmogorov
scale kκ = CκRe3/4, with Re = 97, 245, 1140, 512 (see table 1). The dashed lines indicate
the embedding resolutions used in our code (in brackets). Modes in the white area within this
rectangular domain are set to 0.
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f2D, Ha0 = 80, G = 7.34 × 107 f2D, Ha0 = 400, G = 108
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Figure 5. Top: energy density spectrum in λ-shells (statistically steady flow). Second row:
dissipation density spectrum in λ-shells (statistically steady). Third row: energy density spectrum
in k-shells (statistically steady). Bottom: evolution of the total kinetic energy of freely decaying
flows normalized by the total energy at the time when the forcing was shut down, tdecay . For
given Ha0 and G , initial conditions are taken from the same statistically steady reference flow
resolved up to the Kolmogorov scale for all values of λcut . Each column presents data from
the corresponding cases from figure 4, from which different resolutions are represented by
the following curves: Cλ = 0.35 (dash-dot), Cλ = 0.47 (dash), Cλ = 0.59 (solid). Dotted lines
correspond to the reference case resolved up to the Kolmogorov scale CκRe3/4.
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f2D, Ha0 = 1000, G = 2.7 × 109 f3D, Ha0 = 400, G = 1.2 × 1010

1.0 1.5 2.0 2.5

−7

−6

−5

−4
−2.11

−4.30

1/2 log |λ|

1/2 log |λ| 1/2 log |λ|

1/2 log |λ|

lo
g 

E
(|λ

|1/
2 )

lo
g 

D
(|λ

|1/
2 )

1.0 1.5 2.0

−8

−7

−6

−5

−4

−2.08

−6.15

1.0 1.5 2.0 2.5
−5.5

−5.0

−4.5

−4.0

−3.5
−0.42

−2.84

1.0 1.5 2.0

−6.5

−6.0

−5.5

−5.0
−0.33

−4.19

1.0 1.5 2.0 2.5

−9

−8

−7

−6

−5
−2.25

log k log k

lo
g 

E
(k

)

1.0 1.5 2.0

−9

−8

−7

−6

−2.48

0 10 20

100

10−2

tS0

0 10 20
tS0

E
(t

)/
E

(t
de

ca
y)

10−1

100

Figure 6. Same as figure 5. Left: Cλ = 0.35 (dash-dot), Cλ = 0.47 (dash), Cλ = 0.59 (solid).
Right: Cλ = 0.29 (dash-dot), Cλ = 0.38 (dash), Cλ = 0.48 (solid). Dotted lines correspond to
the reference case resolved up to the Kolmogorov scale CκRe3/4.

and ΣD(l) also comfort us in the choice of Cλ � 0.5 as the minimum cutoff scale
for full resolutions: this value is indeed located at the beginning of a plateau where
further increase of resolution hardly brings any variation in the total energy and
dissipation of the solution. Smaller values of Cλ, on the other hand, may fall outside
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Left: Two-dimensional forcing, right: three-dimensional forcing.

.

this region and calculations at the corresponding resolution may thus fail to capture
noticeable fractions of the total energy and dissipation. On these grounds, we shall
finally propose the following scaling for λmax:√

|λmax |
2πkf

� 0.5Re1/2. (3.4)

The values of kmax
⊥ and kmax

z can be directly deduced from that of λmax through (2.12)
to quantify the scalings from Pothérat & Alboussière (2003) as

kmax
z

kf

� 0.8kf

Re

Haopt

,
kmax

⊥
kf

� 0.5Re1/2. (3.5)

Also, the values of λmax can be expressed as a function of G , which is known a priori,
unlike Re. Letting Gf = ‖ f ‖2f /(ν2L

3/2
f ), where ‖ · ‖2f represents the L2 norm for a

domain of volume L3
f = (L/kf )3, the corresponding graph in figure 8 suggests the

scaling √
|λmax |

2πkf

� 0.47G0.20
f . (3.6)

Finally, beyond the identification of λmax , λ-based spectra from figures 5 and 6
exhibit an interesting feature, as a remarkable steep tail is present in both energy and
dissipation λ-spectra at high values of λ. In all cases, it starts when λ reaches the
value of the eigenvalue λJ = −Ha1/2

opt of the first mode with a wave vector orthogonal
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to B. Since S � 1 in all our calculations, such modes, of the form (0, k⊥), are located
outside the Joule cone and therefore are strongly suppressed by Joule dissipation.
This explains why they carry very little energy.

3.4. Practical use of the scaling laws

The results of the present section now allow us to put forward a simple procedure to
resolve three-dimensional MHD flows in periodic domains: firstly, Lopt and Lint can
be calculated at every time step as the numerical simulation progresses (as is already
usual for Lint ). When S � 1, (3.4) or (3.5) then provide criteria for the resolution
necessary to represent a three-dimensional MHD flow completely.

When S < 1, the flow becomes progressively more isotropic and so does the set of
least dissipative modes. Accordingly, the resolution required to fully resolve the flow
becomes higher than that predicted by scalings (3.4) or (3.5). In this case, Lint and
Lopt are still determined ‘on the fly’ but the usual Kolmogorov criterion must be used
instead of (3.4) or (3.5).

When S � 1, the flow can be either two- or three-dimensional, which poses an
important question about the ability of the least dissipative modes to represent the
flow accurately: on the one hand, when λmax exceeds a value that depends on Ha

only, a first three-dimensional mode appears in the set of least dissipative modes,
independently of the behaviour of the flow itself. When G is increased from 0, on the
other hand, a first three-dimensional physical mode appears in the flow at the actual
transition between two- and three-dimensionality, independently of the method used
to calculate it. We shall examine in the next section whether both coincide. This will
tell us whether the least dissipative modes can be used for the simulation of MHD
turbulence, regardless of whether it is two- or three-dimensional.

4. Least dissipative modes at the transition between two-dimensional and
three-dimensional turbulence

4.1. Two- versus three-dimensional sets of least dissipative modes

We now focus on the question of how to calculate flows using the least dissipative
modes at the transition between two- and three-dimensional MHD turbulence. The
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set of least dissipative modes can either contain only two-dimensional modes or both
two- and three-dimensional modes, depending on the value of λmax . The transition
between these two types of sets occurs at a value λmax = λ3D for which the curve
λ = λmax encloses at least one mode with kz � 1 (bold dashed line in figure 1d ).
According to our previous work (Pothérat & Alboussière 2003) and in the present
notations, the first three-dimensional mode in this sense is associated to the eigenvalue

|λ3D | = 2
Haopt

2π
, (4.1)

and the modulus of the corresponding wave vector in the plane across the magnetic
field lines is

|k3D
⊥ | =

√
Haopt

2π
− 1. (4.2)

It is important to note that although a flow represented by a set comprising
three-dimensional modes is potentially three-dimensional, it is not necessarily three-
dimensional. Instead it can be either two-dimensional or in a state of intermittency
between the two states, as in Zikanov & Thess (1998), if the coefficients of the
three-dimensional modes in expansion (2.9) are 0 or intermittently become 0. This
behaviour is determined by the flow dynamics, independently of the basis chosen to
represent it (provided the flow is correctly resolved, obviously). We shall now compare
the first least dissipative three-dimensional mode to the first three-dimensional mode
that appears in the flow.

4.2. Numerical procedure

We use the same numerical solver as that described in § 3.1 and also the same
type of two-dimensional forcing f 2D (see (3.1)). On the top of previous calculations
initialized with the fluid at rest, we now perform two additional series of calculations,
at Ha0 = 80 and Ha0 = 400 respectively, as follows: we start with fixed Ha0, low
G and the fluid initially at rest. We look for a statistically steady two-dimensional
solution and let it reach a well-developed turbulent state (after a time of the order of
100–200S0, or dimensionally, 100–200 Joule times τj = ρ/(σB2)). With this latter state
as the initial condition, we perform the next calculation by increasing the Grashof
number by 15 %, and repeat the procedure until three-dimensionality appears.

In all simulations the numerical resolutions nx × ny × nz are chosen as the smallest
powers of 2 such that the resolution domain encloses the λ = 1.5λmax curve and
satisfies kmax

⊥ � 1.2kK = 1.2G1/3(1 + log G)1/6. This way, the flow is well resolved
whether in a state of two-dimensional turbulence or in a state of three-dimensional
MHD turbulence. Since Lopt and Haopt cannot be determined in two-dimensional flows
but varies little for a given Ha, we take the approximate values Haopt (Ha0 = 80) = 24
and Haopt (Ha0 = 400) = 55 (see figure 3).

4.3. Measure of three-dimensionality

In order to track three-dimensionality near the transition, we define two quantities
to characterize it. The first one expresses how physical quantities depend on z, so we
shall call it morphological three-dimensionality and define it as

α3D =

(∫ L

0

(f (z) − 1)2 dz

)1/2

, (4.3)
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where f (z) expresses the ratio between the two- and three-dimensional parts of the
RMS velocity fluctuations in the plane z = const:

f (z) =

L0

∫
Ωz′=z

(〈u′(x, y, z′)2〉t )
1/2dxdy

∫
Ω

(〈u′(x, y, z)2〉t )
1/2dx dy dz

. (4.4)

Here, 〈 · 〉t denotes averaging with respect to time and u′ = u − 〈u〉t is the local
velocity fluctuation. α3D gives a global measure of morphological three-dimensionality
as it expresses an average ratio of the three-dimensional to the two-dimensional part
of the velocity fluctuations.

The second type of three-dimensionality is expressed as the ratio of the energy in
the z direction to that in the x and y directions. We shall therefore call it kinematic
three-dimensionality:

β3D =

(
Ez

E⊥

)1/2

=

⎛
⎝

∑
k

w2(k)

∑
k

(u2(k) + v2(k))

⎞
⎠

1/2

. (4.5)

In theory, there is no reason for the first appearance (in the sense of growing G) of
these types of three-dimensionality not to take place in vortices of distinct wavelength,
which we shall therefore name k3Dα

⊥ and k
3Dβ

⊥ respectively.

4.4. First three-dimensional modes and relevance of the least dissipative modes to
transitional flows

On the cases initialized with the fluid at rest, we find that both α3D and β3D jump
to finite values at the same value of the forcing G3D (Haopt ). By contrast, when
the forcing is increased progressively, morphological three-dimensionality appears
at a lower critical value of G than dynamical three-dimensionality. We have
identified k3Dα

⊥ and k
3Dβ

⊥ by calculating the quantities EΣα
⊥ (k⊥) =

∑
kz�1 E⊥(k⊥, kz)

and E
Σβ

⊥ (k⊥) =
∑

kz>0 Ez(k⊥, kz) respectively. Both are plotted in figure 9 for the first
value of the forcing where three-dimensionality was observed. These quantities indeed
remain at noise level for two-dimensional flows. When morphological (respectively
kinematic) three-dimensionality appears, several peaks rise in the profile EΣα

⊥ (k⊥)

(respectively E
Σβ

⊥ (k⊥)) at k⊥ = k3Dα
⊥ (respectively k⊥ = k

3Dβ

⊥ ). Further peaks also

appear around k3Dα
⊥ and k

3Dβ

⊥ . This is due to the fact that three-dimensionality can
only be detected in a slightly supercritical regime. Furthermore, since the maximum of
the iso-λ curve in (k⊥, kz) is not only very ‘flat’ but can also be located at a non-integer
value of k⊥, several peaks are expected to rise around the maximum. This is all the
more true at high Ha . Keeping this in mind, one still sees that at the lowest forcings
where either morphological or kinematic three-dimensionality was detected, both
appeared in columnar vortices of approximately the same wavelength, i.e. k3Dα

⊥ � k
3Dβ

⊥ .
Importantly, this value is consistent with the theoretical estimate (4.2) for k3D

⊥ , albeit
a little smaller in the case Ha0 = 400. On the top of the iso-λ curve being very flat
at Ha0 = 400, this shift towards larger scales can be explained by the fact that the
higher the Ha , the higher the value of G at which three-dimensionality appears,
and the higher the turbulence intensity when this happens. In two-dimensional
turbulence, inertial transfer increases the energy of the large scales, which are therefore
more prone to exhibit instabilities leading to the appearance of three-dimensionality.
Among the least dissipative modes that dissipate energy at about the same rate, this
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Figure 9. Profiles of EΣα
⊥ (k⊥) and E

Σβ
z (k⊥) for Ha0 = 80 (a) and Ha0 = 400 (b): the

corresponding flows are weakly three-dimensional. Curves marked with ‘o’ symbols indicate
cases initialized in a stabilized state at slightly lower forcing while curves without them
correspond to flows initialized at rest. The vertical dashed lines mark the theoretical values of
k3D

⊥ given by (4.2).

favours those with the larger scales, over the strictly least dissipative one predicted
by (4.2).

Importantly, one sees in figure 9 that k3Dα
⊥ � k

3Dβ

⊥ � k3D
⊥ is independent of the

flow’s initial conditions, even though α3D and β3D are not. In other words, even in
cases where morphological and dynamical three-dimensionality appear successively
(in the sense of growing G), they do so in vortices of the same transverse wavelength
(4.2). This implies that one can use the set of least dissipative modes together with
scalings (3.4) or (3.5) to determine a priori the exact set of modes required to resolve
both transitional and three-dimensional flows completely, provided Lopt is known.
(It can be obtained from the calculation of a three-dimensional flow at the same
value of Ha0, for instance.) For flows that lay at the transition between two- and
three-dimensionality, a slight over-resolution is advisable that will absorb the peaks
of three-dimensionality that appear around k3D

⊥ � k3Dα
⊥ � k

3Dβ

⊥ .
It is quite remarkable that for the forcing (and the forcing scale) we have chosen, k3D

⊥
follows (4.2) rather well. Just how universal this behaviour is, however, remains to
be clarified. For a sufficiently turbulent two-dimensional flow forced at kf > k3D

⊥ , the
inverse energy cascade can be expected to transfer energy back to k3D

⊥ where three-
dimensional vortices would form. More generally, our recent experiments on MHD
turbulence in a cubic box have shown that the appearance of three-dimensionality
was governed by a subtle interplay between inertia and the Lorentz force at the scale
of each structure (Klein & Pothérat 2010). The former is determined, on the one hand,
by the forcing, which arbitrarily injects energy in the flow and, on the other hand,
by the turbulent redistribution of energy amongst structures. Flows where turbulence
is absent or too weak to sufficiently erase the non-universal trace of the forcing
therefore do not exhibit the ideal behaviour predicted by (4.2). This was spectacularly
illustrated in our experiment where at low Ha and low Re, the destabilization of
a periodic array of columnar vortices led to remarkable steady three-dimensional
Y-shaped vortices.
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5. Conclusions
In this article, we have shown that DNS of low-Rm MHD turbulence in a three-

dimensional periodic domain could be achieved by using the sequence of least
dissipative eigenmodes from the dissipation operator instead of the traditional Fourier
basis. Not only is this technique far more cost effective at fully resolving the flow
without modelling, but it also enlightens some of its properties that do not appear
otherwise. Indeed, the iso-energy lines follow the lines of constant linear decay rate
λ well in regions of the spectral space that are not directly influenced by the forcing.
Furthermore, energy and dissipation spectra expressed in terms of the eigenvalue λ
associated to these modes instead of k exhibit a clear cutoff that identifies modes
located inside the Joule cone, and therefore strongly suppressed by Joule dissipation.
Most importantly, analysing these spectra for S � 1 allowed us to derive laws that
play the role of Kolmogorov laws of determining the small scales in MHD turbulence:√

|λmax |/(2πkf ) � 0.5Re1/2 or
√

|λmax |/(2πkf ) � 0.47G0.20. Finally, MHD flows in a
periodic domain can be resolved as follows: Lopt and Lint can be obtained on the fly
by minimizing functional ΣEλ

at every time step (see § 3.2). The discrete sequence of
values of λ then follows from (2.8), and ultimately, the small scales are obtained using
our new scalings (3.4) if Sopt � 1, or the Kolmogorov laws if Sopt < 1.

In the last part of this work, we also showed that the set of least dissipative modes
encompassed the modes that first exhibit three-dimensionality when the forcing was
increased from either zero or from that of a two-dimensional flow. This proves that the
set of least dissipative modes is also suitable for the resolution of transitional flows,
and not only for three-dimensional flows. On the top of this, for two-dimensional
flows, which occur in the limit of large Sopt , the Lorentz force vanishes, so the set
of least dissipative modes coincides with the usual set of two-dimensional Fourier
modes. They can therefore be used in conjunction with Kraichnan’s law for the size
of the smallest scales |λmax |1/2/(2π) � G1/3. The least dissipative modes can therefore
be used to calculate MHD flows in a periodic box for all values of Sopt .

Finally, we wish to underline the large potential field of application of the method
presented in this work. The initial idea was to use a basis of modes that already
incorporates the main constitutive structures of the flow, so as to save the costs of
having to reconstruct them using elements of a less suited basis. In the present case,
the basis of least dissipative modes readily rendered the anisotropic properties of
MHD turbulence. Using this basis therefore reduced the cost of DNS by confining
the spectral domain of resolution to that strictly relevant to the flow dynamics.
This procedure can clearly be extended to MHD and non-MHD problems with more
complex boundary conditions. We have recently shown that the orthogonal set of least
dissipative modes in a channel flow with transverse magnetic field were exponential
functions that incorporated the profile of the very thin Hartmann boundary layers
which arise along the walls (Dymkou & Pothérat 2009). Currently, channel flow
DNS are limited to Ha below a few hundred because of the computational cost
involved in meshing these layers. Using the least dissipative modes for this problem
not only brings the same benefits as in the periodic case studied in the present
work, but it also eliminates the difficulty posed by the Hartmann layers as they
do not have to be reconstructed nor meshed. As a spectacular consequence, the
computational cost of DNS based on these modes decreases with Ha instead of
increasing as in current methods based on Tchebychev polynomials. Using the least
dissipative modes is therefore not only beneficial to the simulation of turbulent flows
but also potentially to all flows where the reconstruction of anisotropic structures with
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unsuited elements incurs computational costs far beyond those strictly required by the
dynamics.
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